Menu
News
All News
Dungeons & Dragons
Level Up: Advanced 5th Edition
Pathfinder
Starfinder
Warhammer
2d20 System
Year Zero Engine
Industry News
Reviews
Dragon Reflections
White Dwarf Reflections
Columns
Weekly Digests
Weekly News Digest
Freebies, Sales & Bundles
RPG Print News
RPG Crowdfunding News
Game Content
ENterplanetary DimENsions
Mythological Figures
Opinion
Worlds of Design
Peregrine's Nest
RPG Evolution
Other Columns
From the Freelancing Frontline
Monster ENcyclopedia
WotC/TSR Alumni Look Back
4 Hours w/RSD (Ryan Dancey)
The Road to 3E (Jonathan Tweet)
Greenwood's Realms (Ed Greenwood)
Drawmij's TSR (Jim Ward)
Community
Forums & Topics
Forum List
Latest Posts
Forum list
*Dungeons & Dragons
Level Up: Advanced 5th Edition
D&D Older Editions, OSR, & D&D Variants
*TTRPGs General
*Pathfinder & Starfinder
EN Publishing
*Geek Talk & Media
Search forums
Chat/Discord
Resources
Wiki
Pages
Latest activity
Media
New media
New comments
Search media
Downloads
Latest reviews
Search resources
EN Publishing
Store
EN5ider
Adventures in ZEITGEIST
Awfully Cheerful Engine
What's OLD is NEW
Judge Dredd & The Worlds Of 2000AD
War of the Burning Sky
Level Up: Advanced 5E
Events & Releases
Upcoming Events
Private Events
Featured Events
Socials!
EN Publishing
Twitter
BlueSky
Facebook
Instagram
EN World
BlueSky
YouTube
Facebook
Twitter
Twitch
Podcast
Features
Top 5 RPGs Compiled Charts 2004-Present
Adventure Game Industry Market Research Summary (RPGs) V1.0
Ryan Dancey: Acquiring TSR
Q&A With Gary Gygax
D&D Rules FAQs
TSR, WotC, & Paizo: A Comparative History
D&D Pronunciation Guide
Million Dollar TTRPG Kickstarters
Tabletop RPG Podcast Hall of Fame
Eric Noah's Unofficial D&D 3rd Edition News
D&D in the Mainstream
D&D & RPG History
About Morrus
Log in
Register
What's new
Search
Search
Search titles only
By:
Forums & Topics
Forum List
Latest Posts
Forum list
*Dungeons & Dragons
Level Up: Advanced 5th Edition
D&D Older Editions, OSR, & D&D Variants
*TTRPGs General
*Pathfinder & Starfinder
EN Publishing
*Geek Talk & Media
Search forums
Chat/Discord
Menu
Log in
Register
Install the app
Install
Upgrade your account to a Community Supporter account and remove most of the site ads.
Community
General Tabletop Discussion
D&D Older Editions, OSR, & D&D Variants
[3.5] Crit stacking?
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Reply to thread
Message
<blockquote data-quote="tomBitonti" data-source="post: 1003772" data-attributes="member: 13107"><p><strong>Some calculations</strong></p><p></p><p>This is all off-the-cuff. My apologies for mistakes.</p><p></p><p>Some calculations appear below ... the upshot appears immediately:</p><p></p><p>I have only included in my calculations details for CR 18-20,</p><p>19-20, and 20. Unfortunately, when the CR becomes wide,</p><p>the calculations become a bit messy.</p><p></p><p>For total damage expectation:</p><p></p><p>When you have a small (5%) chance to hit, a (20 x4) weapon</p><p>is better than a (20, x3) weapon, and a (20 x3) weapon</p><p>is better than either a (19-20 x2) or a (18-20 x2) weapon.</p><p>This is of course, as in this case the critical multiplier is all</p><p>that matters.</p><p></p><p>The 10% chance to hit case is somewhat messy.</p><p></p><p>When you have a (15%) or better chance to hit a (20 x3)</p><p>weapon is the same as a (19-20 x2) weapon, and a (20 x4)</p><p>weapon is the same as a (18-20 x2) weapon.</p><p></p><p>The calculations show that, aside from changes to the</p><p>shape of the damage curve, that increasing either the</p><p>critical range with a critical multiplier of 2, or increasing</p><p>the critical multipler (with a critical range of 20) are the</p><p>same.</p><p></p><p>The calculations suggest that increasing --both-- the</p><p>critical range and the critical multipler is a bad idea, as</p><p>the benefits multiply. As the pattern of values from</p><p>the PHB suggests, the initial weapons do not ever have</p><p>a CM of anything by x2 when the CR is wider than 20,</p><p>and the CR is always 20 when the CM is more than x3.</p><p></p><p>Note that there is an alternative way to do the critical rolls</p><p>which gives the same critical results. Always roll two dice,</p><p>and if the first dice is a hit, the hit is a critical hit if the second</p><p>die is in the critical range. I'm still thinking this through, but</p><p>it does seem to give the same results.</p><p></p><p>============================================================</p><p></p><p>Here are the summary charts:</p><p></p><p>AQ == "Attack Quotient" == Chance to hit</p><p>CM == Critical Multiplier</p><p>CR == Critical Range == Chance to threaten a critical</p><p>BDE == Base Damage Expectation</p><p></p><p>There are two cases:</p><p></p><p>When:</p><p></p><p> (AQ == 5) or ((AQ == 10) && (CR > 5))</p><p> TDE == ((AQ - AQ * AQ) + (AQ * AQ) * CM)) * BDE</p><p> TDE == (AQ + ((AQ * AQ) * (CM - 1))) * BDE</p><p></p><p> (AQ > 10) or ((AQ == 10) && (CR == 5))</p><p> TDE == ((AQ - CR * AQ) + (CR * AQ * CM)) * BDE</p><p> TDE == (AQ + ((AQ * CR) * (CM - 1))) * BDE</p><p> TDE == (AQ * (1 + CR * (CM - 1))) * BDE</p><p></p><p>In the first case the critical range has no effect.</p><p>The sole benefit from criticals is due to the critical multiplier.</p><p></p><p>In regards to the second case, note the multiplication:</p><p></p><p> CR * (CM - 1)</p><p></p><p>This is interesting, being linear in both critical range and critical</p><p>multiplier:</p><p></p><p>CF (Critical Factor):</p><p></p><p> CF == CR * (CM - 1)</p><p></p><p>(CF * 100) Chart:</p><p></p><p> CM: 2 3 4 5 6</p><p>CR: 5 5 10 15 20 25</p><p> 10 10 20 40</p><p> 15 15 30</p><p> 20 20</p><p> 25 25</p><p> 30 30</p><p></p><p>When</p><p> (20; x2)</p><p> TDE == AQ * (1.05) * BDE</p><p> (20; x3)</p><p> TDE == AQ * (1.10) * BDE</p><p> (20; x4)</p><p> TDE == AQ * (1.15) * BDE</p><p> </p><p> (19-20; x2)</p><p> TDE == AQ * (1.10) * BDE</p><p></p><p> (18-20; x2)</p><p> TDE == AQ * (1.15) * BDE</p><p></p><p>BDE Multiplier Chart:</p><p></p><p> CM: 2 3 4 5 6</p><p>CR: 5 1.05 1.10 1.15 1.20 1.25</p><p> 10 1.10 1.20 1.30 1.40</p><p> 15 1.15 1.30 1.45 1.60</p><p> 20 1.20 1.40 1.60 1.80</p><p> 25 1.25 1.50 1.75 2.00</p><p> 30 1.30</p><p></p><p>============================================================</p><p></p><p>Here are the original calculations:</p><p></p><p>Representative Weapons:</p><p> Dagger 1d4 19-20 x2</p><p> Sword 1d8 19-20 x2</p><p> BAxe 1d8 20 x3</p><p> Scim 1d6 18-20 x2</p><p> Scythe 2d4 20 x4</p><p></p><p>DB (Damage Bonus):</p><p></p><p>Representative Damage Bonus Range:</p><p> -2 0 +2 +4 +6 +8 +10</p><p></p><p>BDE (Base Damage Expectation):</p><p> 1d4</p><p> 1d6</p><p> 1d8</p><p> 2d4</p><p></p><p>DE (Damage Expectation):</p><p></p><p>DE Chart:</p><p></p><p> BDE: D4 D6 D8 2D4</p><p>DB: -2 1.25 2.00 2.825 3.25</p><p> 0 2.50 3.50 4.50 5.00</p><p> +2 4.50 5.50 6.50 7.00</p><p> +4 6.50 7.50 8.50 9.00</p><p> +6 8.50 9.50 10.50 11.00</p><p> +8 10.50 11.50 12.50 13.00</p><p> +10 12.50 13.50 14.50 15.00</p><p></p><p>CM: Critical Multiplier</p><p></p><p> x2 x3 x4</p><p></p><p>CDE (Critical Damage Expectation):</p><p></p><p> CDE == BDE * CM</p><p></p><p>CDE Charts may be slightly off for DB == -2.</p><p></p><p>CDE (x2)</p><p></p><p> BDE: D4 D6 D8 2D4</p><p>DB: -2 2.50 4.00 5.65 6.50</p><p> 0 5.00 7.00 9.00 10.00</p><p> +2 9.00 11.00 13.00 14.00</p><p> +4 13.00 15.00 17.00 18.00</p><p> +6 17.00 19.00 21.00 22.00</p><p> +8 21.00 23.00 25.00 26.00</p><p> +10 25.00 27.00 29.00 30.00</p><p></p><p>CDE (x3)</p><p></p><p> BDE: D4 D6 D8 2D4</p><p>DB: -2 3.75 6.00 8.475 9.75</p><p> 0 7.50 10.50 13.50 15.00</p><p> +2 13.50 16.50 19.50 21.00</p><p> +4 19.50 22.50 25.50 27.00</p><p> +6 25.50 28.50 31.50 33.00</p><p> +8 31.50 34.50 37.50 39.00</p><p> +10 37.50 40.50 43.50 45.00</p><p></p><p>CDE (x4)</p><p></p><p> BDE: D4 D6 D8 2D4</p><p>DB: -2 5.00 8.00 11.30 13.00</p><p> 0 10.00 14.00 18.00 20.00</p><p> +2 18.00 22.00 26.00 28.00</p><p> +4 26.00 30.00 34.00 36.00</p><p> +6 34.00 38.00 42.00 44.00</p><p> +8 42.00 46.00 50.00 52.00</p><p> +10 50.00 54.00 58.00 60.00</p><p></p><p>AC == Armor Class</p><p>AB == Attack Bonus</p><p></p><p>AQ (Attack Quotient):</p><p></p><p> AQ == (5/100) * min(19, max(1, 10 - AC + AB)) </p><p> AQ == chance to hit (decimal chance)</p><p></p><p>AQ * 100 Chart:</p><p></p><p>AC: 5 10 15 20 25</p><p>AB: 0 25 5 5 5 5</p><p> 5 50 25 5 5 5</p><p> 10 75 50 25 5 5</p><p> 15 95 75 50 25 5</p><p> 20 95 95 75 50 25</p><p></p><p>AQ * 100 Range:</p><p> 5 25 50 75 95</p><p></p><p>CR: Critical Range</p><p></p><p>CR * 100 Chart:</p><p></p><p> 20 ==> CR 5</p><p> 19-20 ==> CR 10</p><p> 18-20 ==> CR 15</p><p></p><p>CQ (Critical Quotient):</p><p></p><p> CQ == min(AQ, CR) * AQ</p><p> CQ == chance to critical (decimal chance)</p><p></p><p>When:</p><p> AQ == 5:</p><p> CQ == AQ * AQ</p><p> AQ == 10:</p><p> CR == 5:</p><p> CQ == CR * AQ</p><p> CR > 5:</p><p> CQ == AQ * AQ</p><p> AQ > 10:</p><p> CQ == CR * AQ</p><p></p><p>CQ * 100 Chart:</p><p></p><p>AQ: 5 25 50 75 95</p><p>CR: 5 0.25 1.25 2.50 3.75 4.75</p><p> 10 0.25 2.50 5.00 7.50 9.50</p><p> 15 0.25 3.75 7.50 11.25 14.25</p><p></p><p>TDE (Total Damage Expectation):</p><p></p><p> TDE == ((AQ - CQ) * BDE) + (CQ * CDE)</p><p> TDE == ((AQ - CQ) * BDE) + (CQ * CM * BDE)</p><p> TDE == ((AQ - CQ) + (CQ * CM)) * BDE</p><p></p><p>When:</p><p> (AQ == 5) or ((AQ == 10) && (CR > 5))</p><p> TDE == ((AQ - AQ * AQ) + (AQ * AQ) * CM)) * BDE</p><p> TDE == (AQ + ((AQ * AQ) * (CM - 1))) * BDE</p><p> (AQ > 10) or ((AQ == 10) && (CR == 5))</p><p> TDE == ((AQ - CR * AQ) + (CR * AQ * CM)) * BDE</p><p> TDE == (AQ + ((AQ * CR) * (CM - 1))) * BDE</p><p> TDE == (AQ * (1 + CR * (CM - 1))) * BDE</p><p></p><p>Variations:</p><p></p><p>AQ: 5 25 50 75 95</p><p>CR: 5 10 15</p><p>CM: 2 3 4</p></blockquote><p></p>
[QUOTE="tomBitonti, post: 1003772, member: 13107"] [b]Some calculations[/b] This is all off-the-cuff. My apologies for mistakes. Some calculations appear below ... the upshot appears immediately: I have only included in my calculations details for CR 18-20, 19-20, and 20. Unfortunately, when the CR becomes wide, the calculations become a bit messy. For total damage expectation: When you have a small (5%) chance to hit, a (20 x4) weapon is better than a (20, x3) weapon, and a (20 x3) weapon is better than either a (19-20 x2) or a (18-20 x2) weapon. This is of course, as in this case the critical multiplier is all that matters. The 10% chance to hit case is somewhat messy. When you have a (15%) or better chance to hit a (20 x3) weapon is the same as a (19-20 x2) weapon, and a (20 x4) weapon is the same as a (18-20 x2) weapon. The calculations show that, aside from changes to the shape of the damage curve, that increasing either the critical range with a critical multiplier of 2, or increasing the critical multipler (with a critical range of 20) are the same. The calculations suggest that increasing --both-- the critical range and the critical multipler is a bad idea, as the benefits multiply. As the pattern of values from the PHB suggests, the initial weapons do not ever have a CM of anything by x2 when the CR is wider than 20, and the CR is always 20 when the CM is more than x3. Note that there is an alternative way to do the critical rolls which gives the same critical results. Always roll two dice, and if the first dice is a hit, the hit is a critical hit if the second die is in the critical range. I'm still thinking this through, but it does seem to give the same results. ============================================================ Here are the summary charts: AQ == "Attack Quotient" == Chance to hit CM == Critical Multiplier CR == Critical Range == Chance to threaten a critical BDE == Base Damage Expectation There are two cases: When: (AQ == 5) or ((AQ == 10) && (CR > 5)) TDE == ((AQ - AQ * AQ) + (AQ * AQ) * CM)) * BDE TDE == (AQ + ((AQ * AQ) * (CM - 1))) * BDE (AQ > 10) or ((AQ == 10) && (CR == 5)) TDE == ((AQ - CR * AQ) + (CR * AQ * CM)) * BDE TDE == (AQ + ((AQ * CR) * (CM - 1))) * BDE TDE == (AQ * (1 + CR * (CM - 1))) * BDE In the first case the critical range has no effect. The sole benefit from criticals is due to the critical multiplier. In regards to the second case, note the multiplication: CR * (CM - 1) This is interesting, being linear in both critical range and critical multiplier: CF (Critical Factor): CF == CR * (CM - 1) (CF * 100) Chart: CM: 2 3 4 5 6 CR: 5 5 10 15 20 25 10 10 20 40 15 15 30 20 20 25 25 30 30 When (20; x2) TDE == AQ * (1.05) * BDE (20; x3) TDE == AQ * (1.10) * BDE (20; x4) TDE == AQ * (1.15) * BDE (19-20; x2) TDE == AQ * (1.10) * BDE (18-20; x2) TDE == AQ * (1.15) * BDE BDE Multiplier Chart: CM: 2 3 4 5 6 CR: 5 1.05 1.10 1.15 1.20 1.25 10 1.10 1.20 1.30 1.40 15 1.15 1.30 1.45 1.60 20 1.20 1.40 1.60 1.80 25 1.25 1.50 1.75 2.00 30 1.30 ============================================================ Here are the original calculations: Representative Weapons: Dagger 1d4 19-20 x2 Sword 1d8 19-20 x2 BAxe 1d8 20 x3 Scim 1d6 18-20 x2 Scythe 2d4 20 x4 DB (Damage Bonus): Representative Damage Bonus Range: -2 0 +2 +4 +6 +8 +10 BDE (Base Damage Expectation): 1d4 1d6 1d8 2d4 DE (Damage Expectation): DE Chart: BDE: D4 D6 D8 2D4 DB: -2 1.25 2.00 2.825 3.25 0 2.50 3.50 4.50 5.00 +2 4.50 5.50 6.50 7.00 +4 6.50 7.50 8.50 9.00 +6 8.50 9.50 10.50 11.00 +8 10.50 11.50 12.50 13.00 +10 12.50 13.50 14.50 15.00 CM: Critical Multiplier x2 x3 x4 CDE (Critical Damage Expectation): CDE == BDE * CM CDE Charts may be slightly off for DB == -2. CDE (x2) BDE: D4 D6 D8 2D4 DB: -2 2.50 4.00 5.65 6.50 0 5.00 7.00 9.00 10.00 +2 9.00 11.00 13.00 14.00 +4 13.00 15.00 17.00 18.00 +6 17.00 19.00 21.00 22.00 +8 21.00 23.00 25.00 26.00 +10 25.00 27.00 29.00 30.00 CDE (x3) BDE: D4 D6 D8 2D4 DB: -2 3.75 6.00 8.475 9.75 0 7.50 10.50 13.50 15.00 +2 13.50 16.50 19.50 21.00 +4 19.50 22.50 25.50 27.00 +6 25.50 28.50 31.50 33.00 +8 31.50 34.50 37.50 39.00 +10 37.50 40.50 43.50 45.00 CDE (x4) BDE: D4 D6 D8 2D4 DB: -2 5.00 8.00 11.30 13.00 0 10.00 14.00 18.00 20.00 +2 18.00 22.00 26.00 28.00 +4 26.00 30.00 34.00 36.00 +6 34.00 38.00 42.00 44.00 +8 42.00 46.00 50.00 52.00 +10 50.00 54.00 58.00 60.00 AC == Armor Class AB == Attack Bonus AQ (Attack Quotient): AQ == (5/100) * min(19, max(1, 10 - AC + AB)) AQ == chance to hit (decimal chance) AQ * 100 Chart: AC: 5 10 15 20 25 AB: 0 25 5 5 5 5 5 50 25 5 5 5 10 75 50 25 5 5 15 95 75 50 25 5 20 95 95 75 50 25 AQ * 100 Range: 5 25 50 75 95 CR: Critical Range CR * 100 Chart: 20 ==> CR 5 19-20 ==> CR 10 18-20 ==> CR 15 CQ (Critical Quotient): CQ == min(AQ, CR) * AQ CQ == chance to critical (decimal chance) When: AQ == 5: CQ == AQ * AQ AQ == 10: CR == 5: CQ == CR * AQ CR > 5: CQ == AQ * AQ AQ > 10: CQ == CR * AQ CQ * 100 Chart: AQ: 5 25 50 75 95 CR: 5 0.25 1.25 2.50 3.75 4.75 10 0.25 2.50 5.00 7.50 9.50 15 0.25 3.75 7.50 11.25 14.25 TDE (Total Damage Expectation): TDE == ((AQ - CQ) * BDE) + (CQ * CDE) TDE == ((AQ - CQ) * BDE) + (CQ * CM * BDE) TDE == ((AQ - CQ) + (CQ * CM)) * BDE When: (AQ == 5) or ((AQ == 10) && (CR > 5)) TDE == ((AQ - AQ * AQ) + (AQ * AQ) * CM)) * BDE TDE == (AQ + ((AQ * AQ) * (CM - 1))) * BDE (AQ > 10) or ((AQ == 10) && (CR == 5)) TDE == ((AQ - CR * AQ) + (CR * AQ * CM)) * BDE TDE == (AQ + ((AQ * CR) * (CM - 1))) * BDE TDE == (AQ * (1 + CR * (CM - 1))) * BDE Variations: AQ: 5 25 50 75 95 CR: 5 10 15 CM: 2 3 4 [/QUOTE]
Insert quotes…
Verification
Post reply
Community
General Tabletop Discussion
D&D Older Editions, OSR, & D&D Variants
[3.5] Crit stacking?
Top