Menu
News
All News
Dungeons & Dragons
Level Up: Advanced 5th Edition
Pathfinder
Starfinder
Warhammer
2d20 System
Year Zero Engine
Industry News
Reviews
Dragon Reflections
White Dwarf Reflections
Columns
Weekly Digests
Weekly News Digest
Freebies, Sales & Bundles
RPG Print News
RPG Crowdfunding News
Game Content
ENterplanetary DimENsions
Mythological Figures
Opinion
Worlds of Design
Peregrine's Nest
RPG Evolution
Other Columns
From the Freelancing Frontline
Monster ENcyclopedia
WotC/TSR Alumni Look Back
4 Hours w/RSD (Ryan Dancey)
The Road to 3E (Jonathan Tweet)
Greenwood's Realms (Ed Greenwood)
Drawmij's TSR (Jim Ward)
Community
Forums & Topics
Forum List
Latest Posts
Forum list
*Dungeons & Dragons
Level Up: Advanced 5th Edition
D&D Older Editions
*TTRPGs General
*Pathfinder & Starfinder
EN Publishing
*Geek Talk & Media
Search forums
Chat/Discord
Resources
Wiki
Pages
Latest activity
Media
New media
New comments
Search media
Downloads
Latest reviews
Search resources
EN Publishing
Store
EN5ider
Adventures in ZEITGEIST
Awfully Cheerful Engine
What's OLD is NEW
Judge Dredd & The Worlds Of 2000AD
War of the Burning Sky
Level Up: Advanced 5E
Events & Releases
Upcoming Events
Private Events
Featured Events
Socials!
EN Publishing
Twitter
BlueSky
Facebook
Instagram
EN World
BlueSky
YouTube
Facebook
Twitter
Twitch
Podcast
Features
Top 5 RPGs Compiled Charts 2004-Present
Adventure Game Industry Market Research Summary (RPGs) V1.0
Ryan Dancey: Acquiring TSR
Q&A With Gary Gygax
D&D Rules FAQs
TSR, WotC, & Paizo: A Comparative History
D&D Pronunciation Guide
Million Dollar TTRPG Kickstarters
Tabletop RPG Podcast Hall of Fame
Eric Noah's Unofficial D&D 3rd Edition News
D&D in the Mainstream
D&D & RPG History
About Morrus
Log in
Register
What's new
Search
Search
Search titles only
By:
Forums & Topics
Forum List
Latest Posts
Forum list
*Dungeons & Dragons
Level Up: Advanced 5th Edition
D&D Older Editions
*TTRPGs General
*Pathfinder & Starfinder
EN Publishing
*Geek Talk & Media
Search forums
Chat/Discord
Menu
Log in
Register
Install the app
Install
Community
General Tabletop Discussion
*Dungeons & Dragons
D&D Update: 2024 Rulebooks & Survey Results
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Reply to thread
Message
<blockquote data-quote="Yaarel" data-source="post: 9192647" data-attributes="member: 58172"><p>The following experiment is to understand the nature of dice rolls.</p><p></p><p>Rethink the point buy costs.</p><p></p><p>Here, the goal is a point buy method whose costs are proportional to the dice roll results.</p><p></p><p>The costs are weighted according to the 4d6-Lowest dice roll.</p><p></p><p>To determine the costs, determine the statistical chance of rolling a score, when using the 4d6-Lowest method. Here, there is a 1.000 (namely a 100%) chance that the score will be at least 3. Thus a 3 is least valuable. However, a score that is at least a 17 is much rarer and much more valuable, at a 0.0579 (namely a 5.79%) chance.</p><p></p><p>Then the inverse of the chance is the proportional cost. For example, to improve a score of 16 to 17 costs about 17 points: 17.27 = 1 / 0.0579.</p><p></p><p>Here the default score is 10. The 10 is given for free. The scores higher cost incrementally more upwards from 10.</p><p></p><p></p><table style='width: 100%'><tr><td><strong>SCORE</strong></td><td>Chance of at least<br /> (x)</td><td>Inverse<br /> (1/x)</td><td>Rounded cost for<br /> each improvement</td><td><strong>POINT COST</strong></td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td>18</td><td>.0162</td><td>61.73</td><td>62</td><td>99</td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td>17</td><td>.0579</td><td>17.27</td><td>17</td><td>37</td></tr><tr><td>16</td><td>.1304</td><td>7.669</td><td>8</td><td>20</td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td><strong>15</strong></td><td>.2315</td><td>4.320</td><td>4</td><td><strong>12</strong></td></tr><tr><td><strong>14</strong></td><td>.3549</td><td>2.818</td><td>3</td><td><strong>8</strong></td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td><strong>13</strong></td><td>.4877</td><td>2.050</td><td>2</td><td><strong>5</strong></td></tr><tr><td><strong>12</strong></td><td>.6165</td><td>1.622</td><td>2</td><td><strong>3</strong></td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td><strong>11</strong></td><td>.7307</td><td>1.369</td><td>1</td><td><strong>1</strong></td></tr><tr><td><strong>10</strong></td><td>.8248</td><td>1.212</td><td>1</td><td><strong>DEFAULT</strong></td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td>9</td><td>.8951</td><td>1.117</td><td>1</td><td>−1</td></tr><tr><td>8</td><td>.9429</td><td>1.061</td><td>1</td><td>−2</td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td>7</td><td>.9722</td><td>1.029</td><td>1</td><td>−3</td></tr><tr><td>6</td><td>.9884</td><td>1.012</td><td>1</td><td>−4</td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td>5</td><td>.9961</td><td>1.004</td><td>1</td><td>−5</td></tr><tr><td>4</td><td>.9992</td><td>1.001</td><td>1</td><td>−6</td></tr><tr><td></td><td></td><td></td><td></td><td></td></tr><tr><td>3</td><td>1.000</td><td>1.000</td><td>1</td><td>−7</td></tr></table><p></p><p>As the table demonstrates, a natural 18 is very rare and very valuable. It costs far more than the point buy method can ever afford. When the dice roll method actually rolls an 18, it by itself is worth far more than the entire standard array.</p><p></p><p></p><p>The average array for the 4d6-Lowest dice roll is: 16, 14, 13, 12, 10, 9</p><p></p><p>This array is worth 35 points.</p><p></p><p>Other arrays that are worth 35 points include:</p><p></p><p>16, 15, 12, 10, 10, 10</p><p>16, 15, 11, 11, 11, 10</p><p>16, 14, 13, 11, 11, 10</p><p>16, 14, 12, 12, 11, 10</p><p>15, 15, 14, 12, 10, 10</p><p>15, 14, 14, 13, 11, 11</p><p>15, 14, 14, 12, 12, 11</p><p>15, 14, 13, 13, 13, 10</p><p>14, 14, 14, 14, 12, 10</p><p>14, 14, 14, 13, 13, 11</p><p></p><p>All of these equivalents of the 4d6-Lowest method are worth more than the standard array.</p><p></p><p>But if the dice roll method happens to roll an 18, the actual value of its array is worth vastly more than the standard array.</p><p></p><p>And because players discard low rolls, the actual average of 4d6-Lowest is worth many more points.</p><p></p><p>The scores of the 4d6-Lowest dice roll are equivalent to many free feats at level 1.</p></blockquote><p></p>
[QUOTE="Yaarel, post: 9192647, member: 58172"] The following experiment is to understand the nature of dice rolls. Rethink the point buy costs. Here, the goal is a point buy method whose costs are proportional to the dice roll results. The costs are weighted according to the 4d6-Lowest dice roll. To determine the costs, determine the statistical chance of rolling a score, when using the 4d6-Lowest method. Here, there is a 1.000 (namely a 100%) chance that the score will be at least 3. Thus a 3 is least valuable. However, a score that is at least a 17 is much rarer and much more valuable, at a 0.0579 (namely a 5.79%) chance. Then the inverse of the chance is the proportional cost. For example, to improve a score of 16 to 17 costs about 17 points: 17.27 = 1 / 0.0579. Here the default score is 10. The 10 is given for free. The scores higher cost incrementally more upwards from 10. [TABLE] [TR] [TD][B]SCORE[/B][/TD] [TD]Chance of at least (x)[/TD] [TD]Inverse (1/x)[/TD] [TD]Rounded cost for each improvement[/TD] [TD][B]POINT COST[/B][/TD] [/TR] [TR] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [/TR] [TR] [TD]18[/TD] [TD].0162[/TD] [TD]61.73[/TD] [TD]62[/TD] [TD]99[/TD] [/TR] [TR] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [/TR] [TR] [TD]17[/TD] [TD].0579[/TD] [TD]17.27[/TD] [TD]17[/TD] [TD]37[/TD] [/TR] [TR] [TD]16[/TD] [TD].1304[/TD] [TD]7.669[/TD] [TD]8[/TD] [TD]20[/TD] [/TR] [TR] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [/TR] [TR] [TD][B]15[/B][/TD] [TD].2315[/TD] [TD]4.320[/TD] [TD]4[/TD] [TD][B]12[/B][/TD] [/TR] [TR] [TD][B]14[/B][/TD] [TD].3549[/TD] [TD]2.818[/TD] [TD]3[/TD] [TD][B]8[/B][/TD] [/TR] [TR] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [/TR] [TR] [TD][B]13[/B][/TD] [TD].4877[/TD] [TD]2.050[/TD] [TD]2[/TD] [TD][B]5[/B][/TD] [/TR] [TR] [TD][B]12[/B][/TD] [TD].6165[/TD] [TD]1.622[/TD] [TD]2[/TD] [TD][B]3[/B][/TD] [/TR] [TR] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [/TR] [TR] [TD][B]11[/B][/TD] [TD].7307[/TD] [TD]1.369[/TD] [TD]1[/TD] [TD][B]1[/B][/TD] [/TR] [TR] [TD][B]10[/B][/TD] [TD].8248[/TD] [TD]1.212[/TD] [TD]1[/TD] [TD][B]DEFAULT[/B][/TD] [/TR] [TR] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [/TR] [TR] [TD]9[/TD] [TD].8951[/TD] [TD]1.117[/TD] [TD]1[/TD] [TD]−1[/TD] [/TR] [TR] [TD]8[/TD] [TD].9429[/TD] [TD]1.061[/TD] [TD]1[/TD] [TD]−2[/TD] [/TR] [TR] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [/TR] [TR] [TD]7[/TD] [TD].9722[/TD] [TD]1.029[/TD] [TD]1[/TD] [TD]−3[/TD] [/TR] [TR] [TD]6[/TD] [TD].9884[/TD] [TD]1.012[/TD] [TD]1[/TD] [TD]−4[/TD] [/TR] [TR] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [/TR] [TR] [TD]5[/TD] [TD].9961[/TD] [TD]1.004[/TD] [TD]1[/TD] [TD]−5[/TD] [/TR] [TR] [TD]4[/TD] [TD].9992[/TD] [TD]1.001[/TD] [TD]1[/TD] [TD]−6[/TD] [/TR] [TR] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [TD][/TD] [/TR] [TR] [TD]3[/TD] [TD]1.000[/TD] [TD]1.000[/TD] [TD]1[/TD] [TD]−7[/TD] [/TR] [/TABLE] As the table demonstrates, a natural 18 is very rare and very valuable. It costs far more than the point buy method can ever afford. When the dice roll method actually rolls an 18, it by itself is worth far more than the entire standard array. The average array for the 4d6-Lowest dice roll is: 16, 14, 13, 12, 10, 9 This array is worth 35 points. Other arrays that are worth 35 points include: 16, 15, 12, 10, 10, 10 16, 15, 11, 11, 11, 10 16, 14, 13, 11, 11, 10 16, 14, 12, 12, 11, 10 15, 15, 14, 12, 10, 10 15, 14, 14, 13, 11, 11 15, 14, 14, 12, 12, 11 15, 14, 13, 13, 13, 10 14, 14, 14, 14, 12, 10 14, 14, 14, 13, 13, 11 All of these equivalents of the 4d6-Lowest method are worth more than the standard array. But if the dice roll method happens to roll an 18, the actual value of its array is worth vastly more than the standard array. And because players discard low rolls, the actual average of 4d6-Lowest is worth many more points. The scores of the 4d6-Lowest dice roll are equivalent to many free feats at level 1. [/QUOTE]
Insert quotes…
Verification
Post reply
Community
General Tabletop Discussion
*Dungeons & Dragons
D&D Update: 2024 Rulebooks & Survey Results
Top