Menu
News
All News
Dungeons & Dragons
Level Up: Advanced 5th Edition
Pathfinder
Starfinder
Warhammer
2d20 System
Year Zero Engine
Industry News
Reviews
Dragon Reflections
White Dwarf Reflections
Columns
Weekly Digests
Weekly News Digest
Freebies, Sales & Bundles
RPG Print News
RPG Crowdfunding News
Game Content
ENterplanetary DimENsions
Mythological Figures
Opinion
Worlds of Design
Peregrine's Nest
RPG Evolution
Other Columns
From the Freelancing Frontline
Monster ENcyclopedia
WotC/TSR Alumni Look Back
4 Hours w/RSD (Ryan Dancey)
The Road to 3E (Jonathan Tweet)
Greenwood's Realms (Ed Greenwood)
Drawmij's TSR (Jim Ward)
Community
Forums & Topics
Forum List
Latest Posts
Forum list
*Dungeons & Dragons
Level Up: Advanced 5th Edition
D&D Older Editions
*TTRPGs General
*Pathfinder & Starfinder
EN Publishing
*Geek Talk & Media
Search forums
Chat/Discord
Resources
Wiki
Pages
Latest activity
Media
New media
New comments
Search media
Downloads
Latest reviews
Search resources
EN Publishing
Store
EN5ider
Adventures in ZEITGEIST
Awfully Cheerful Engine
What's OLD is NEW
Judge Dredd & The Worlds Of 2000AD
War of the Burning Sky
Level Up: Advanced 5E
Events & Releases
Upcoming Events
Private Events
Featured Events
Socials!
EN Publishing
Twitter
BlueSky
Facebook
Instagram
EN World
BlueSky
YouTube
Facebook
Twitter
Twitch
Podcast
Features
Top 5 RPGs Compiled Charts 2004-Present
Adventure Game Industry Market Research Summary (RPGs) V1.0
Ryan Dancey: Acquiring TSR
Q&A With Gary Gygax
D&D Rules FAQs
TSR, WotC, & Paizo: A Comparative History
D&D Pronunciation Guide
Million Dollar TTRPG Kickstarters
Tabletop RPG Podcast Hall of Fame
Eric Noah's Unofficial D&D 3rd Edition News
D&D in the Mainstream
D&D & RPG History
About Morrus
Log in
Register
What's new
Search
Search
Search titles only
By:
Forums & Topics
Forum List
Latest Posts
Forum list
*Dungeons & Dragons
Level Up: Advanced 5th Edition
D&D Older Editions
*TTRPGs General
*Pathfinder & Starfinder
EN Publishing
*Geek Talk & Media
Search forums
Chat/Discord
Menu
Log in
Register
Install the app
Install
Community
General Tabletop Discussion
*Dungeons & Dragons
GWF vs TWF: The Math
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Reply to thread
Message
<blockquote data-quote="GrumpyGamer" data-source="post: 6329775" data-attributes="member: 6777318"><p>I was fiddling around and wrote a monte carlo sim for all 4 fighter fighting styles in Python. </p><p></p><p>It takes the arguments: </p><p><strong>nrolls</strong> - number of times to run the sim. For example 100000 would be the same as sitting down and recording the results of a 100000 attack rounds.</p><p><strong>apr</strong> - this is the number of attacks the fighter has in a round (for twf it adds in the extra attack)</p><p><strong>cn</strong> - critical hit number. For the starter set martial archetype this is 20 at 1st level, 19 at 3rd level, 18, at 15th level. </p><p><strong>pn</strong> - proficiency bonus</p><p> <strong>an</strong> - ability bonus </p><p><strong>ac</strong> - target AC you are attacking </p><p><strong>ndice</strong> - number of dice your weapon has </p><p><strong>dicetype</strong> - dice type your weapon uses</p><p></p><p>It returns:</p><p>h - number of hits</p><p>t - total damage</p><p>a - average damage per round</p><p></p><p>[CODE]</p><p>import random</p><p></p><p></p><p>def dicesim_gwf(nrolls, apr, cn, pn, an, ac, ndice, dicetype):</p><p> t = 0</p><p> h = 0</p><p> for i in range(nrolls): # repeat N experiments</p><p> for j in range(apr): </p><p> att = 0</p><p> matt = 0</p><p> att = random.randint(1,20)</p><p> matt = att+pn+an</p><p> if matt >= ac:</p><p> h = h+1</p><p> t = t+an </p><p> if att >= cn:</p><p> for k in range(ndice): #critroll 1</p><p> r = random.randint(1, dicetype) # roll die dicetype</p><p> if r <= 2: # reroll 1 or 2</p><p> r = random.randint(1, dicetype)</p><p> t = t+r</p><p> for l in range(ndice): #critroll 2</p><p> r = random.randint(1, dicetype) # roll die dicetype</p><p> if r <= 2: # reroll 1 or 2</p><p> r = random.randint(1, dicetype)</p><p> t = t+r</p><p> else:</p><p> for m in range(ndice):</p><p> r = random.randint(1, dicetype) # roll die dicetype</p><p> if r <= 2: # reroll 1 or 2</p><p> r = random.randint(1, dicetype)</p><p> t = t+r</p><p></p><p></p><p> a = float(t)/nrolls # average dpr</p><p> return h,t,a</p><p></p><p></p><p>def dicesim_twf(nrolls, apr, cn, pn, an, ac, ndice, dicetype):</p><p> t = 0</p><p> h = 0</p><p> for i in range(nrolls): # repeat N experiments</p><p> for j in range(apr+1):</p><p> att = 0</p><p> matt = 0</p><p> att = random.randint(1,20)</p><p> matt = att+pn+an</p><p> if matt >= ac:</p><p> h = h+1</p><p> t = t+an </p><p> if att >= cn:</p><p> for k in range(ndice): #critroll 1</p><p> r = random.randint(1, dicetype) # roll die dicetype</p><p> t = t+r</p><p> for l in range(ndice): #critroll 2</p><p> r = random.randint(1, dicetype) # roll die dicetype</p><p> t = t+r </p><p> else:</p><p> for m in range(ndice):</p><p> r = random.randint(1, dicetype) # roll die dicetype</p><p> t = t+r</p><p></p><p></p><p> a = float(t)/nrolls # average dpr</p><p> return h,t,a</p><p> </p><p>def dicesim_arch(nrolls, apr, cn, pn, an, ac, ndice, dicetype):</p><p> t = 0</p><p> h = 0</p><p> for i in range(nrolls): # repeat N experiments</p><p> for j in range(apr): </p><p> att = 0</p><p> matt = 0</p><p> att = random.randint(1,20)</p><p> matt = att+pn+an+2</p><p> if matt >= ac:</p><p> h = h+1</p><p> t = t+an </p><p> if att >= cn:</p><p> for k in range(ndice): #critroll 1</p><p> r = random.randint(1, dicetype) # roll die dicetype</p><p> t = t+r</p><p> for l in range(ndice): #critroll 2</p><p> r = random.randint(1, dicetype) # roll die dicetype</p><p> t = t+r </p><p> else:</p><p> for m in range(ndice):</p><p> r = random.randint(1, dicetype) # roll die dicetype</p><p> t = t+r</p><p></p><p></p><p> a = float(t)/nrolls # average dpr</p><p> return h,t,a</p><p> </p><p>def dicesim_duel(nrolls, apr, cn, pn, an, ac, ndice, dicetype):</p><p> t = 0</p><p> h = 0</p><p> for i in range(nrolls): # repeat N experiments</p><p> for j in range(apr): </p><p> att = 0</p><p> matt = 0</p><p> att = random.randint(1,20)</p><p> matt = att+pn+an</p><p> if matt >= ac:</p><p> h = h+1</p><p> t = t+an+2</p><p> if att >= cn:</p><p> for k in range(ndice): #critroll 1</p><p> r = random.randint(1, dicetype) # roll die dicetype</p><p> t = t+r</p><p> for l in range(ndice): #critroll 2</p><p> r = random.randint(1, dicetype) # roll die dicetype</p><p> t = t+r </p><p> else:</p><p> for m in range(ndice):</p><p> r = random.randint(1, dicetype) # roll die dicetype</p><p> t = t+r</p><p></p><p></p><p> a = float(t)/nrolls # average dpr</p><p> return h,t,a</p><p>[/CODE]</p><p></p><p>Output 1st level:</p><p>>>> dicesim_duel(100000,1,20,2,3,14,1,8)</p><p>(59802, 590842, 5.90842)</p><p>>>> dicesim_arch(100000,1,20,2,3,14,1,10)</p><p>(69995, 622456, 6.22456)</p><p>>>> dicesim_twf(100000,1,20,2,3,14,1,6)</p><p>(119667, 813139, 8.13139)</p><p>>>> dicesim_gwf(100000,1,20,2,3,14,2,6)</p><p>(59745, 718465, 7.18465)</p><p></p><p>Output 3rd Level:</p><p>>>> dicesim_duel(100000,1,19,2,3,14,1,8)</p><p>(60419, 619405, 6.19405)</p><p>>>> dicesim_arch(100000,1,19,2,3,14,1,10)</p><p>(69815, 646214, 6.46214)</p><p>>>> dicesim_twf(100000,1,19,2,3,14,1,6)</p><p>(119790, 849033, 8.49033)</p><p>>>> dicesim_gwf(100000,1,19,2,3,14,2,6)</p><p>(59976, 762115, 7.62115)</p><p></p><p>Output 5th Level:</p><p>>>> dicesim_duel(100000,2,19,3,4,16,1,8)</p><p>(120056, 1352018, 13.52018)</p><p>>>> dicesim_arch(100000,2,19,3,4,16,1,8)</p><p>(140024, 1280541, 12.80541)</p><p>>>> dicesim_twf(100000,2,19,3,4,16,1,6)</p><p>(180287, 1457079, 14.57079)</p><p>>>> dicesim_gwf(100000,2,19,3,4,16,2,6)</p><p>(120257, 1651104, 16.51104)</p><p></p><p>Output 11th Level:</p><p>>>> dicesim_duel(100000,3,19,4,5,18,1,8)</p><p>(180125, 2206257, 22.06257)</p><p>>>> dicesim_arch(100000,3,19,4,5,18,1,8)</p><p>(210257, 2133683, 21.33683)</p><p>>>> dicesim_twf(100000,3,19,4,5,18,1,6)</p><p>(239982, 2179882, 21.79882)</p><p>>>> dicesim_gwf(100000,3,19,4,5,18,2,6)</p><p>(179996, 2651385, 26.51385)</p><p></p><p>I would say that the 11th level numbers are the fuzziest as you may very well be fighting mobs with less than 18 AC and you may have a magical item and/or a feat which will skew these numbers.</p><p></p><p>Python is free and easy to install if you want to play around with your own inputs or change the code.</p><p></p><p><strong>TLDR: </strong>The Op is correct Fighter 1-4 does the most damage with TWF until 5th level where the fighter does the most damage with GWF. Outstanding wildcards that could change this recommendation are feats and magical weapons.</p></blockquote><p></p>
[QUOTE="GrumpyGamer, post: 6329775, member: 6777318"] I was fiddling around and wrote a monte carlo sim for all 4 fighter fighting styles in Python. It takes the arguments: [B]nrolls[/B] - number of times to run the sim. For example 100000 would be the same as sitting down and recording the results of a 100000 attack rounds. [B]apr[/B] - this is the number of attacks the fighter has in a round (for twf it adds in the extra attack) [B]cn[/B] - critical hit number. For the starter set martial archetype this is 20 at 1st level, 19 at 3rd level, 18, at 15th level. [B]pn[/B] - proficiency bonus [B]an[/B] - ability bonus [B]ac[/B] - target AC you are attacking [B]ndice[/B] - number of dice your weapon has [B]dicetype[/B] - dice type your weapon uses It returns: h - number of hits t - total damage a - average damage per round [CODE] import random def dicesim_gwf(nrolls, apr, cn, pn, an, ac, ndice, dicetype): t = 0 h = 0 for i in range(nrolls): # repeat N experiments for j in range(apr): att = 0 matt = 0 att = random.randint(1,20) matt = att+pn+an if matt >= ac: h = h+1 t = t+an if att >= cn: for k in range(ndice): #critroll 1 r = random.randint(1, dicetype) # roll die dicetype if r <= 2: # reroll 1 or 2 r = random.randint(1, dicetype) t = t+r for l in range(ndice): #critroll 2 r = random.randint(1, dicetype) # roll die dicetype if r <= 2: # reroll 1 or 2 r = random.randint(1, dicetype) t = t+r else: for m in range(ndice): r = random.randint(1, dicetype) # roll die dicetype if r <= 2: # reroll 1 or 2 r = random.randint(1, dicetype) t = t+r a = float(t)/nrolls # average dpr return h,t,a def dicesim_twf(nrolls, apr, cn, pn, an, ac, ndice, dicetype): t = 0 h = 0 for i in range(nrolls): # repeat N experiments for j in range(apr+1): att = 0 matt = 0 att = random.randint(1,20) matt = att+pn+an if matt >= ac: h = h+1 t = t+an if att >= cn: for k in range(ndice): #critroll 1 r = random.randint(1, dicetype) # roll die dicetype t = t+r for l in range(ndice): #critroll 2 r = random.randint(1, dicetype) # roll die dicetype t = t+r else: for m in range(ndice): r = random.randint(1, dicetype) # roll die dicetype t = t+r a = float(t)/nrolls # average dpr return h,t,a def dicesim_arch(nrolls, apr, cn, pn, an, ac, ndice, dicetype): t = 0 h = 0 for i in range(nrolls): # repeat N experiments for j in range(apr): att = 0 matt = 0 att = random.randint(1,20) matt = att+pn+an+2 if matt >= ac: h = h+1 t = t+an if att >= cn: for k in range(ndice): #critroll 1 r = random.randint(1, dicetype) # roll die dicetype t = t+r for l in range(ndice): #critroll 2 r = random.randint(1, dicetype) # roll die dicetype t = t+r else: for m in range(ndice): r = random.randint(1, dicetype) # roll die dicetype t = t+r a = float(t)/nrolls # average dpr return h,t,a def dicesim_duel(nrolls, apr, cn, pn, an, ac, ndice, dicetype): t = 0 h = 0 for i in range(nrolls): # repeat N experiments for j in range(apr): att = 0 matt = 0 att = random.randint(1,20) matt = att+pn+an if matt >= ac: h = h+1 t = t+an+2 if att >= cn: for k in range(ndice): #critroll 1 r = random.randint(1, dicetype) # roll die dicetype t = t+r for l in range(ndice): #critroll 2 r = random.randint(1, dicetype) # roll die dicetype t = t+r else: for m in range(ndice): r = random.randint(1, dicetype) # roll die dicetype t = t+r a = float(t)/nrolls # average dpr return h,t,a [/CODE] Output 1st level: >>> dicesim_duel(100000,1,20,2,3,14,1,8) (59802, 590842, 5.90842) >>> dicesim_arch(100000,1,20,2,3,14,1,10) (69995, 622456, 6.22456) >>> dicesim_twf(100000,1,20,2,3,14,1,6) (119667, 813139, 8.13139) >>> dicesim_gwf(100000,1,20,2,3,14,2,6) (59745, 718465, 7.18465) Output 3rd Level: >>> dicesim_duel(100000,1,19,2,3,14,1,8) (60419, 619405, 6.19405) >>> dicesim_arch(100000,1,19,2,3,14,1,10) (69815, 646214, 6.46214) >>> dicesim_twf(100000,1,19,2,3,14,1,6) (119790, 849033, 8.49033) >>> dicesim_gwf(100000,1,19,2,3,14,2,6) (59976, 762115, 7.62115) Output 5th Level: >>> dicesim_duel(100000,2,19,3,4,16,1,8) (120056, 1352018, 13.52018) >>> dicesim_arch(100000,2,19,3,4,16,1,8) (140024, 1280541, 12.80541) >>> dicesim_twf(100000,2,19,3,4,16,1,6) (180287, 1457079, 14.57079) >>> dicesim_gwf(100000,2,19,3,4,16,2,6) (120257, 1651104, 16.51104) Output 11th Level: >>> dicesim_duel(100000,3,19,4,5,18,1,8) (180125, 2206257, 22.06257) >>> dicesim_arch(100000,3,19,4,5,18,1,8) (210257, 2133683, 21.33683) >>> dicesim_twf(100000,3,19,4,5,18,1,6) (239982, 2179882, 21.79882) >>> dicesim_gwf(100000,3,19,4,5,18,2,6) (179996, 2651385, 26.51385) I would say that the 11th level numbers are the fuzziest as you may very well be fighting mobs with less than 18 AC and you may have a magical item and/or a feat which will skew these numbers. Python is free and easy to install if you want to play around with your own inputs or change the code. [B]TLDR: [/B]The Op is correct Fighter 1-4 does the most damage with TWF until 5th level where the fighter does the most damage with GWF. Outstanding wildcards that could change this recommendation are feats and magical weapons. [/QUOTE]
Insert quotes…
Verification
Post reply
Community
General Tabletop Discussion
*Dungeons & Dragons
GWF vs TWF: The Math
Top