So, with a very rough and hand waved explanation, you could say that the 100g factor of your inertial dampeners translates into being able to withstand 100x the pressure normally possible.
That's some pretty frantic hand-waving to get to that conclusion. For one thing, your typical space ship is designed to withstand vacuum, not a positive external pressure - so 100x normal is 100 * 0, which isn't getting you much. Plus, there's a scaling issue to consider....
An inertial damping system would be designed to work on the ship and its contents, so they don't get squished when Wesley Crusher stomps on the gas. So, if the system provides protection against a 100g acceleration, maximum, that means the maximum force it can apply is
F = 100g * MassOfShip.
Now, say you direct that system outwards, over the skin of the ship, the entire surface area, to resist pressure. The pressure you can resist is then
P = F/AreaOfShip = 100g * MassOfShip / AreaOfShip.
P = 100g * DensityOfShip * VolumeOfShip/AreaOfShip.
So, if we figure that Density of ships is fairly constant - small ships or big ships, they're all kind of like modern naval vessels, with some metal with large volumes for people to move around in - then the determining factor is the size of the ship (Volume/Area is often thought of as "characteristic length"). Not all ships will be able to take 100x normal pressure. Really large ships with 100g inertial dampers will be able to take much less external pressure than small ships with the same kind of damping systems.