shurai said:
Really any level is fine with me, but for simplicity's sake keeping it under maybe 10th or so would make things easier for all of us.
Thanks again.
Let's do 9th, then. That's a break-point for GMW, so it might be inappropriate, but what the hell.
Bob the Bowman: Str 10, Dex 20 (after two stat increases), Con 12. Point Blank Shot, WF - Longbow, Rapid Shot, WS - Longbow, Improved Critical - Longbow, some other stuff.
Gary the Greatsword-wielder: Str 20 (after two stat increases), Dex 10, Con 12. WF - Greatsword, WS - Greatsword, Improved Critical - Greatsword, some other stuff.
Let's go ahead and give them both flat +3 weapons (composite long bow and greatsword, respectively) -- if they don't have at least that high, they get 'em through GMW. Bob the Bowman also has +3 arrows, courtesy of GMW.
We'll give 'em both stat +2 (Dex and Str, respectively) items, as well.
They're both Fighter 9's, so their BAB's are +9/+4.
Bob's modified attack bonus is (+3 from bow, +3 from arrows, +6 from Dex, +1 from WF): +22/+17, or +20/+20/+15 with Rapid Shot.
Gary's modified attack bonus is (+3 from sword, +6 from Strength, +1 from WF): +19/+14.
Bob's modified damage (we'll assume he's firing from more than 30 feet away) is: 1d8 + 6 (from bow and arrows), 19-20/x3. That averages to 12.6 damage per hit (including critical hits).
Gary's modified damage is: 2d6 + 14, 17-20/x2. That averages to 25.2 damage per hit (including crits).
Let's look at their average damage per round:
Against an opponent with a 20 AC:
Bob, firing 3 shots: 95% chance to hit, 95% chance to hit, 80% chance to hit = .95 * 12.6 + .95 * 12.6 + .8 * 12.6 = 34.02 damage per round.
Gary, attacking twice: 95% chance to hit, 75% chance to hit = .95 * 25.2 + .75 * 25.2 = 42.84 damage per round.
Against an opponent with a 25 AC:
Bob, firing 3 shots: 80% chance to hit, 80% chance to hit, 55% chance to hit = .8 * 12.6 + .8 * 12.6 + .55 * 12.6 = 27.09 damage per round.
Gary, attacking twice: 75% chance to hit, 50% chance to hit = .75 * 25.2 + .5 * 25.2 = 31.5 damage per round.
Against an opponent with a 30 AC:
Bob, firing 3 shots: 55% chance to hit, 55% chance to hit, 30% chance to hit = .55 * 12.6 + .55 * 12.6 + .3 * 12.6 = 17.64 damage per round.
Gary, attacking twice: 50% chance to hit, 25% chance to hit = .5 * 25.2 + .25 * 25.2 = 18.9 damage per round.
Against an opponent with a 35 AC:
Bob, firing 3 shots: 30% chance to hit, 30% chance to hit, 5% chance to hit = .3 * 12.6 + .3 * 12.6 + .05 * 11.55 = 8.1375 damage per round.
Gary, attacking twice: 25% chance to hit, 5% chance to hit = .25 * 25.2 + .05 * 22.05 = 7.4025 damage per round.
(Note that in that last case, average damage per hit from secondary attacks drops due to decreasing chance of critical hits.)
Okay, so, as the trend clearly indicates, Bob gets better the higher the AC of the opponent (due to his higher attack rating and larger number of attacks per round, but lower average damage output).
Now, let's examine a couple of variants on the scenario:
What if Bob is within 30 feet? Point blank shot and Weapon Specialization kick in, and he fires at +21/+21/+16 or +23/+18, and does 1d8 + 9 damage (averages to 16.2 damage).
AC 25 Opponent:
Bob firing thrice: 85% chance to hit, 85% chance to hit, 60% chance to hit = .85 * 16.2 + .85 * 16.2 + .6 * 16.2 = 37.26 damage per round.
(Gary's still at 31.5 damage per round).
AC 30 Opponent:
Bob firing thrice: 60% chance to hit, 60% chance to hit, 35% chance to hit = .6 * 16.2 + .6 * 16.2 + .35 * 16.2 = 25.11 damage per round.
(Gary's still at 18.9 damage per round.)
What if Bob's not within 30 feet, but has Bracers of Archery? (This does raise the question of how he's getting his Dex enhancement, but we'll ignore that for now):
Bob attacks at +22/+22/+17, but for only 12.6 damage.
AC 25 Opponent:
Bob firing thrice: 90% chance to hit, 90% chance to hit, 65% chance to hit = .9 * 12.6 + .9 * 12.6 + .65 * 12.6 = 30.87 damage per round.
(Gary's still at 31.5 damage per round).
AC 30 Opponent:
Bob firing thrice: 65% chance to hit, 65% chance to hit, 40% chance to hit = .65 * 12.6 + .65 * 12.6 + .4 * 12.6 = 21.42 damage per round.
(Gary's still at 18.9 damage per round.)
Some comments about trends both ways: level 9 is a good level for Bob, the first time his GMW gets him +3 arrows instead of +2 arrows. Level 11 is a good level for Gary, since he narrows the attacks-per-round gap from 2 versus 3 to 3 versus 4 (though the third iterative attack for both Bob and Gary is at such a penalty to hit that it doesn't hugely strongly affect their damage outputs). Level 12 is good for Bob, as his GMW'd arrows go up to +4.
As is, I hope, totally obvious, Bob totally wrecks Gary if he both has Bracers of Archery and is within 30 feet.
Gary gets more voodoo out of stat increasers, since he gets the bonus both to attack and *1.5 the bonus towards damage. That's both large and in charge, and I'm not talking about the feat. It might be unfair to look at them with only a piddly +2 to their stats, since a buffing Sorcerer or Wizard at this level could often give +4 or more with
Bull's Strength.
I'm not going to draw any conclusions for you -- you said you wanted data, and that's what I got. I don't know if you'll interpret this data to mean that archery is/isn't overpowered.