Xeviat
Dungeon Mistress, she/her
Hi everyone. Can someone check my math? I fiddled with the formula on this until I got it working, and it seems to match up to me doing the math long-hand.
For a 1 minute duration spell with a save at the end of each of the creature's turns, how long should a spell last with a given percent chance to fail a save?
[TABLE="width: 500"]
[TR]
[TD]Failure%[/TD]
[TD]Average Rounds[/TD]
[/TR]
[TR]
[TD]0[/TD]
[TD]0[/TD]
[/TR]
[TR]
[TD]5[/TD]
[TD]0.05[/TD]
[/TR]
[TR]
[TD]10[/TD]
[TD]0.11[/TD]
[/TR]
[TR]
[TD]15[/TD]
[TD]0.18[/TD]
[/TR]
[TR]
[TD]20[/TD]
[TD]0.25[/TD]
[/TR]
[TR]
[TD]25[/TD]
[TD]0.33[/TD]
[/TR]
[TR]
[TD]30[/TD]
[TD]0.43[/TD]
[/TR]
[TR]
[TD]35[/TD]
[TD]0.54[/TD]
[/TR]
[TR]
[TD]40[/TD]
[TD]0.67[/TD]
[/TR]
[TR]
[TD]45[/TD]
[TD]0.82[/TD]
[/TR]
[TR]
[TD]50[/TD]
[TD]1[/TD]
[/TR]
[TR]
[TD]55[/TD]
[TD]1.22[/TD]
[/TR]
[TR]
[TD]60[/TD]
[TD]1.49[/TD]
[/TR]
[TR]
[TD]65[/TD]
[TD]1.83[/TD]
[/TR]
[TR]
[TD]70[/TD]
[TD]2.27[/TD]
[/TR]
[TR]
[TD]75[/TD]
[TD]2.83[/TD]
[/TR]
[TR]
[TD]80[/TD]
[TD]3.57[/TD]
[/TR]
[TR]
[TD]85[/TD]
[TD]4.55[/TD]
[/TR]
[TR]
[TD]90[/TD]
[TD]5.86[/TD]
[/TR]
[TR]
[TD]95[/TD]
[TD]7.62[/TD]
[/TR]
[TR]
[TD]100[/TD]
[TD]10[/TD]
[/TR]
[/TABLE]
The formula I ended up using was (chance to fail^rounds)*(1-chance to fail) to determine the percent chance of it lasting each of the given number of rounds, then it was rounds*chance all summed together to get these.
Did I get it right?
For a 1 minute duration spell with a save at the end of each of the creature's turns, how long should a spell last with a given percent chance to fail a save?
[TABLE="width: 500"]
[TR]
[TD]Failure%[/TD]
[TD]Average Rounds[/TD]
[/TR]
[TR]
[TD]0[/TD]
[TD]0[/TD]
[/TR]
[TR]
[TD]5[/TD]
[TD]0.05[/TD]
[/TR]
[TR]
[TD]10[/TD]
[TD]0.11[/TD]
[/TR]
[TR]
[TD]15[/TD]
[TD]0.18[/TD]
[/TR]
[TR]
[TD]20[/TD]
[TD]0.25[/TD]
[/TR]
[TR]
[TD]25[/TD]
[TD]0.33[/TD]
[/TR]
[TR]
[TD]30[/TD]
[TD]0.43[/TD]
[/TR]
[TR]
[TD]35[/TD]
[TD]0.54[/TD]
[/TR]
[TR]
[TD]40[/TD]
[TD]0.67[/TD]
[/TR]
[TR]
[TD]45[/TD]
[TD]0.82[/TD]
[/TR]
[TR]
[TD]50[/TD]
[TD]1[/TD]
[/TR]
[TR]
[TD]55[/TD]
[TD]1.22[/TD]
[/TR]
[TR]
[TD]60[/TD]
[TD]1.49[/TD]
[/TR]
[TR]
[TD]65[/TD]
[TD]1.83[/TD]
[/TR]
[TR]
[TD]70[/TD]
[TD]2.27[/TD]
[/TR]
[TR]
[TD]75[/TD]
[TD]2.83[/TD]
[/TR]
[TR]
[TD]80[/TD]
[TD]3.57[/TD]
[/TR]
[TR]
[TD]85[/TD]
[TD]4.55[/TD]
[/TR]
[TR]
[TD]90[/TD]
[TD]5.86[/TD]
[/TR]
[TR]
[TD]95[/TD]
[TD]7.62[/TD]
[/TR]
[TR]
[TD]100[/TD]
[TD]10[/TD]
[/TR]
[/TABLE]
The formula I ended up using was (chance to fail^rounds)*(1-chance to fail) to determine the percent chance of it lasting each of the given number of rounds, then it was rounds*chance all summed together to get these.
Did I get it right?