Magic Slim
First Post
OK I did the math again.
I would seem that the less you have iterative attacks, the more beneficial Rapid shot is to you. The following tables represent the Expected average damage for a full round action (for an arrow that does an average of 4,5 points of damage when it hits). We have 2 situations, the first one where the attacker only has one iterative attack, and the other where the attacker has 4 iterative attacks. I hope the layout isn't too bad.
1: normal attack
H: hasted attack
RS: rapid shot attack
4I: 4 iterative attacks (ARGH wait that's not right... I counted all 4 iterative attacks as having the same chance of hitting...) Back to the drawing board... ARGH I have a class I have to go too
In these calculations, I calculate each arrow's probability of hitting, instead of calculating the probability of 1 or 2 or 5 hitting... I guess RS is still better...
Slim
I would seem that the less you have iterative attacks, the more beneficial Rapid shot is to you. The following tables represent the Expected average damage for a full round action (for an arrow that does an average of 4,5 points of damage when it hits). We have 2 situations, the first one where the attacker only has one iterative attack, and the other where the attacker has 4 iterative attacks. I hope the layout isn't too bad.
1: normal attack
H: hasted attack
RS: rapid shot attack
4I: 4 iterative attacks (ARGH wait that's not right... I counted all 4 iterative attacks as having the same chance of hitting...) Back to the drawing board... ARGH I have a class I have to go too

Code:
1 + H 1 + H + RS
CtH 2 1 0 AveDam CtH 3 2 1 0 AveDam
0% 0,0% 0,0% 100,0% 0,00 0% 0,0% 0,0% 0,0% 100,0% 0,00
5% 0,3% 9,5% 90,3% 0,45 0% 0,0% 0,0% 0,0% 100,0% 0,00
10% 1,0% 18,0% 81,0% 0,90 0% 0,0% 0,0% 0,0% 100,0% 0,00
15% 2,3% 25,5% 72,3% 1,35 5% 0,0% 0,7% 13,5% 85,7% 0,68
20% 4,0% 32,0% 64,0% 1,80 10% 0,1% 2,7% 24,3% 72,9% 1,35
25% 6,3% 37,5% 56,3% 2,25 15% 0,3% 5,7% 32,5% 61,4% 2,03
30% 9,0% 42,0% 49,0% 2,70 20% 0,8% 9,6% 38,4% 51,2% 2,70
35% 12,3% 45,5% 42,3% 3,15 25% 1,6% 14,1% 42,2% 42,2% 3,38
40% 16,0% 48,0% 36,0% 3,60 30% 2,7% 18,9% 44,1% 34,3% 4,05
45% 20,3% 49,5% 30,3% 4,05 35% 4,3% 23,9% 44,4% 27,5% 4,73
50% 25,0% 50,0% 25,0% 4,50 40% 6,4% 28,8% 43,2% 21,6% 5,40
55% 30,3% 49,5% 20,3% 4,95 45% 9,1% 33,4% 40,8% 16,6% 6,08
60% 36,0% 48,0% 16,0% 5,40 50% 12,5% 37,5% 37,5% 12,5% 6,75
65% 42,3% 45,5% 12,3% 5,85 55% 16,6% 40,8% 33,4% 9,1% 7,43
70% 49,0% 42,0% 9,0% 6,30 60% 21,6% 43,2% 28,8% 6,4% 8,10
75% 56,3% 37,5% 6,3% 6,75 65% 27,5% 44,4% 23,9% 4,3% 8,78
80% 64,0% 32,0% 4,0% 7,20 70% 34,3% 44,1% 18,9% 2,7% 9,45
85% 72,3% 25,5% 2,3% 7,65 75% 42,2% 42,2% 14,1% 1,6% 10,13
90% 81,0% 18,0% 1,0% 8,10 80% 51,2% 38,4% 9,6% 0,8% 10,80
95% 90,3% 9,5% 0,3% 8,55 85% 61,4% 32,5% 5,7% 0,3% 11,48
100% 100,0% 0,0% 0,0% 9,00 90% 72,9% 24,3% 2,7% 0,1% 12,15
AVE 4,50 AVE 5,50
In these calculations, I calculate each arrow's probability of hitting, instead of calculating the probability of 1 or 2 or 5 hitting... I guess RS is still better...
Code:
4I + H arrow # 4I + H + RS arrow #
CtH 1 2 3 4 5 AveDam CtH 1 2 3 4 5 6
0% 0% 0% 0% 0% 0% 0,00 0% 0% 0% 0% 0% 0% 0% 0,00
5% 5% 5% 0% 0% 0% 0,45 5% 0% 0% 0% 0% 0% 0% 0,00
10% 10% 10% 0% 0% 0% 0,90 10% 0% 0% 0% 0% 0% 0% 0,00
15% 15% 15% 0% 0% 0% 1,35 15% 5% 5% 5% 0% 0% 0% 0,68
20% 20% 20% 0% 0% 0% 1,80 20% 10% 10% 10% 0% 0% 0% 1,35
25% 25% 25% 0% 0% 0% 2,25 25% 15% 15% 15% 0% 0% 0% 2,03
30% 30% 30% 5% 0% 0% 2,93 30% 20% 20% 20% 0% 0% 0% 2,70
35% 35% 35% 10% 0% 0% 3,60 35% 25% 25% 25% 0% 0% 0% 3,38
40% 40% 40% 15% 0% 0% 4,28 40% 30% 30% 30% 5% 0% 0% 4,28
45% 45% 45% 20% 0% 0% 4,95 45% 35% 35% 35% 10% 0% 0% 5,18
50% 50% 50% 25% 0% 0% 5,63 50% 40% 40% 40% 15% 0% 0% 6,08
55% 55% 55% 30% 5% 0% 6,53 55% 45% 45% 45% 20% 0% 0% 6,98
60% 60% 60% 35% 10% 0% 7,43 60% 50% 50% 50% 25% 0% 0% 7,88
65% 65% 65% 40% 15% 0% 8,33 65% 55% 55% 55% 30% 5% 0% 9,00
70% 70% 70% 45% 20% 0% 9,23 70% 60% 60% 60% 35% 10% 0% 10,13
75% 75% 75% 50% 25% 0% 10,13 75% 65% 65% 65% 40% 15% 0% 11,25
80% 80% 80% 55% 30% 5% 11,25 80% 70% 70% 70% 45% 20% 0% 12,38
85% 85% 85% 60% 35% 10% 12,38 85% 75% 75% 75% 50% 25% 0% 13,50
90% 90% 90% 65% 40% 15% 13,50 90% 80% 80% 80% 55% 30% 5% 14,85
95% 95% 95% 70% 45% 20% 14,63 95% 85% 85% 85% 60% 35% 10% 16,20
100% 100% 100% 75% 50% 25% 15,75 100% 90% 90% 90% 65% 40% 15% 17,55
105% 100% 100% 80% 55% 30% 16,43 105% 95% 95% 95% 70% 45% 20% 18,90
110% 100% 100% 85% 60% 35% 17,10 110% 100% 100% 100% 75% 50% 25% 20,25
115% 100% 100% 90% 65% 40% 17,78 115% 100% 100% 100% 80% 55% 30% 20,93
120% 100% 100% 95% 70% 45% 18,45 120% 100% 100% 100% 85% 60% 35% 21,60
125% 100% 100% 100% 75% 50% 19,13 125% 100% 100% 100% 90% 65% 40% 22,28
130% 100% 100% 100% 80% 55% 19,58 130% 100% 100% 100% 95% 70% 45% 22,95
135% 100% 100% 100% 85% 60% 20,03 135% 100% 100% 100% 100% 75% 50% 23,63
140% 100% 100% 100% 90% 65% 20,48 140% 100% 100% 100% 100% 80% 55% 24,08
145% 100% 100% 100% 95% 70% 20,93 145% 100% 100% 100% 100% 85% 60% 24,53
150% 100% 100% 100% 100% 75% 21,38 150% 100% 100% 100% 100% 90% 65% 24,98
155% 100% 100% 100% 100% 80% 21,60 155% 100% 100% 100% 100% 95% 70% 25,43
160% 100% 100% 100% 100% 85% 21,83 160% 100% 100% 100% 100% 100% 75% 25,88
165% 100% 100% 100% 100% 90% 22,05 165% 100% 100% 100% 100% 100% 80% 26,10
170% 100% 100% 100% 100% 95% 22,28 170% 100% 100% 100% 100% 100% 85% 26,33
175% 100% 100% 100% 100% 100% 22,50 175% 100% 100% 100% 100% 100% 90% 26,55
180% 100% 100% 100% 100% 100% 22,50 180% 100% 100% 100% 100% 100% 95% 26,78
185% 100% 100% 100% 100% 100% 22,50 185% 100% 100% 100% 100% 100% 100% 27,00
190% 100% 100% 100% 100% 100% 22,50 190% 100% 100% 100% 100% 100% 100% 27,00
195% 100% 100% 100% 100% 100% 22,50 195% 100% 100% 100% 100% 100% 100% 27,00
200% 100% 100% 100% 100% 100% 22,50 200% 100% 100% 100% 100% 100% 100% 27,00
13,45 15,48
Slim
Last edited: