Drawmack
First Post
I want to make skill checks better resemble the bell curve to make calculating success rates easier. Though I'm going to do 2d10 - 1 unless a natural 20 is rolled. This does away with the 19 instead of the 20 because we count a natural 20 as a 30 and a natural 1 as a -10 so we maintain the critical success and failures but do away with almost criticals. What this does to the system is this.
Average Roll: 1.05 (or there abouts)
sets of rolls that can make any number
1 {1,1}
2 {1,2;2,1}
3 {1,3;3,1;2,2}
4 {1,4;4,1;2,3;3,2}
5 {1,5;5,1;2,4;4,2;3,3}
6 {1,6;6,1;2,5;5,2;3,4;4,3}
7 {1,7;7,1;2,6;6,2;3,5;5,3;4,4}
8 {1,8;8,1;2,7;7,2;6,3;3,6;4,5;5,4}
9 {1,9;9,1;2,8;8,2;3,7;7,3;4,6;6,4;5,5}
10 {1,10;10,1;2,9;9,2;3,8;8,3;4,7;7,4;5,6;6,5}
11 {2,10;10,2;3,9;9,3;4,8;8,4;5,7;7,5;6,6}
12 {3,10;10,3;4,9;9,4;5,8;8,5;6,7;7,6}
13 {4,10;10,4;5,9;9,5;6,8;8,6;7,7}
14 {5,10;10,5;6,9;9,6;7,8;8,7}
15 {6,10;10,6;7,9;9,7;8,8}
16 {7,10;10,7;8,9;9,8}
17 {8,10;10,8;9,9}
18 {9,10;10,9}
19 {}
20 {10,10}
% chance of any number
1 (1%), 2 (2%), 3 (3%), 4 (4%), 5 (5%), 6 (6%), 7 (7%), 8 (8%), 9 (9%), 10 (10%), 11 (9%), 12 (8%), 13 (7%), 14 (6%), 15 (5%), 16 (4%), 17 (3%), 18 (2%), 19 (0%), 20 (1%)
This means that most (44%) of the rolls will be between 8 and 12. So it heavily weights the die to the center of the scale. This way standard deviation plays a much larger roll in the game.
This will only be used for skill checks everything else will still be rolled with 1d20
Average Roll: 1.05 (or there abouts)
sets of rolls that can make any number
1 {1,1}
2 {1,2;2,1}
3 {1,3;3,1;2,2}
4 {1,4;4,1;2,3;3,2}
5 {1,5;5,1;2,4;4,2;3,3}
6 {1,6;6,1;2,5;5,2;3,4;4,3}
7 {1,7;7,1;2,6;6,2;3,5;5,3;4,4}
8 {1,8;8,1;2,7;7,2;6,3;3,6;4,5;5,4}
9 {1,9;9,1;2,8;8,2;3,7;7,3;4,6;6,4;5,5}
10 {1,10;10,1;2,9;9,2;3,8;8,3;4,7;7,4;5,6;6,5}
11 {2,10;10,2;3,9;9,3;4,8;8,4;5,7;7,5;6,6}
12 {3,10;10,3;4,9;9,4;5,8;8,5;6,7;7,6}
13 {4,10;10,4;5,9;9,5;6,8;8,6;7,7}
14 {5,10;10,5;6,9;9,6;7,8;8,7}
15 {6,10;10,6;7,9;9,7;8,8}
16 {7,10;10,7;8,9;9,8}
17 {8,10;10,8;9,9}
18 {9,10;10,9}
19 {}
20 {10,10}
% chance of any number
1 (1%), 2 (2%), 3 (3%), 4 (4%), 5 (5%), 6 (6%), 7 (7%), 8 (8%), 9 (9%), 10 (10%), 11 (9%), 12 (8%), 13 (7%), 14 (6%), 15 (5%), 16 (4%), 17 (3%), 18 (2%), 19 (0%), 20 (1%)
This means that most (44%) of the rolls will be between 8 and 12. So it heavily weights the die to the center of the scale. This way standard deviation plays a much larger roll in the game.
This will only be used for skill checks everything else will still be rolled with 1d20