I would also add that using a d12 suggests a lot of randomness; rolling a 1 on 1d12 is just as likely as rolling a 12. However when multiple dice are involved, the values become a bell curve, where median results are more common.
Using a d12 on a weapon suggests that the damage has a lot of potential, but is not reliable. Using 2d6 suggests a more relaible weapon, but is less likely to do its maximum potential.
2d6
1- impossible
2- 1,1 ; 1,1 (<5%)
3- 2,1 ; 1,2 (<5%)
4- 1,3 ; 3,1 ; 2,2 ; 2,2 (<10%)
5- 1,4 ; 4,1 ; 3,2 ; 2,3 (<10%)
6- 1,5 ; 5,1 ; 2,4 ; 4,2 ; 3,3 ; 3,3 (<10%)
7- 1,6 ; 6,1 ; 5,2 ; 2,5 ; 3,4 ; 4,3 (<10%)
8- 2,6 ; 6,2 ; 5,3 ; 3,5 ; 4,4 ; 4,4 (<10%)
9- 3,6 ; 6,3 ; 5,4 ; 4,5 (<10%)
10- 6,4 ; 4,6 ; 5,5 ; 5,5 (<10%)
11- 6,5 ; 5,6 (<5%)
12- 6,6 ; 6,6 (<5%)
Wheras the chances of rolling a 12 on 1d12 is a little more than 8%. (as there is any other result.)
Because everybody loves this boring statistics crap. =p